
Writing Programs for ExpEYES

Whether you’re just starting your programming journey, a curious student eager to learn, or an aspiring
engineer, this manual will be your trusty companion on this exciting adventure. With our device’s Python library,
you’ll discover how to easily conduct experiments, collect data, and gain insights into various physical
phenomena, all while having fun and building essential skills.

In the upcoming sections, We’ll walk you through the Python library’s features, using straightforward examples
and hands-on exercises. You’ll quickly see how you can create experiments, measure data, and even automate
tasks to save time and improve accuracy.

Import and connect
the following two lines import the python library, and then attempt to connect to it. the instance p will now be
used to access all the functions of ExpEYES. It is our gateway to the device.

If connected successfully, p will be automatically initialized. This process also uploads the unique calibration
coe�cients from the connected device.

If connection fails, Device opening Error will be printed, and the p.connected variable will be set to False. After
properly connecting, you can either recreate p , or call p.__init__()

Simple Test

Connecting to the device

from eyes17 import eyes
p = eyes.open()

In [1]: p
Out[1]: <eyes17.eyes.Interface at 0x7fef91b95120>

Failure to detect a device

Functions : Accessing the hardware

 Analog Waveforms Digital Sensors

Read A Voltage

from eyes17 import eyes
p = eyes.open()
print(p.get_voltage('A1')

Analog Measurements: Voltages, Oscilloscope calls etc

Voltage Measurement

Capture calls

Capture con�guration such as trigger, select_range etc

Code Examples

Analog Output: Set Voltages

PV1, PV2

Waveform Generators: con�gure sine, triangle, square wave outputs

sine wave frequency, amplitude, shape con�guration

square wave 1,2 frequency, duty_cycle setting.

Digital I/O, Timing: Logic Levels, and Timing measurements

read and set logic levels on digital pins

timing measurements

Capacitance, Resistance:

Measure Capacitance

file:///tmp/mkdocs_pmgmm7ow/programming/analog/
file:///tmp/mkdocs_pmgmm7ow/programming/waveforms/
file:///tmp/mkdocs_pmgmm7ow/programming/digital/
file:///tmp/mkdocs_pmgmm7ow/programming/sensors/
file:///tmp/mkdocs_pmgmm7ow/programming/analog/
file:///tmp/mkdocs_pmgmm7ow/programming/analogout/
file:///tmp/mkdocs_pmgmm7ow/programming/waveforms/
file:///tmp/mkdocs_pmgmm7ow/programming/digital/
file:///tmp/mkdocs_pmgmm7ow/programming/meters/

The following is an unsorted list. head over to relevant sections for detailed usage docs and examples

Measure Resistance

I2C Sensors: Read data from sensors

I2C Function Calls

Document Sensors

file:///tmp/mkdocs_pmgmm7ow/programming/sensors/

METHOD DESCRIPTION

get_version Returns a version string

reconnect reconnect to the device. Needed if the USB cable was replugged

guess_sensor scans the I2C bus, and returns a list of sensor options

get_resistance measure resistance between SEN and GND

capture1 Oscilloscope: Single Channel

capture_action Oscilloscope: Single Channel with an initial action such as set_state

capture2 Oscilloscope: 2 Channels

capture4 Oscilloscope: 4 Channels

capture1_hr Oscilloscope: Single Channel . High Resolution

capture_traces Oscilloscope: Initialization

capture_hr_multiple Oscilloscope: High Res , multiple channels. Sequential Sampling*

fetch_trace Fetch oscilloscope buffer from the hardware

oscilloscope_progress Total samples collected.

con�gure_trigger trigger level and channel for the oscilloscope

set_gain gain for A1 or A2 inputs

select_range Voltage Range Selection for A1, or A2 . Similar to the range knob on a
multimeter

get_voltage measure voltage . Input channel options A1, A2, A3, IN1, SEN

get_voltage_time measure voltage as well as a timestamp. Returns a tuple

voltmeter_autorange autorange the voltmeter

Function call summary

METHOD DESCRIPTION

get_average_voltage measure an averaged voltage value

get_high_freq measure high frequencies on IN2 (>100KHz)

get_freq measure frequency on IN2

MeasureInterval timing measurements for digital signals on IN2 or SEN

MeasureMultipleDigitalEdges timing measurements for digital signals on IN2 or SEN

SinglePinEdges timing measurements for digital signals on IN2 or SEN

DoublePinEdges timing measurements for digital signals on IN2 or SEN

get_states get logic level on inputs SEN, IN2

get_state get logic level on inputs SEN, IN2

set_state set output state of OD1 / SQ1 / SQ2 / CS1-4/

stepper_move Stepper motor movement

stepper_forward Stepper motor movement

stepper_reverse Stepper motor movement

set_multiplexer Set CS1-4 to control analog multiplexers . Only on SEElab3

duty_cycle measure duty cycle on IN2

r2rtime Timing measurements on IN2/SEN. Rising Edge to Rising edge

f2ftime Timing measurements on IN2/SEN. Falling Edge to Falling edge

r2ftime Timing measurements on IN2/SEN.

f2rtime Timing measurements on IN2/SEN.

multi_r2rtime Timing measurements on IN2/SEN. Multiple rising edges.

METHOD DESCRIPTION

set2rtime Enable an output such as OD1/SQ1, and then measure time to a rising
edge on IN2/SEN

set2ftime Enable an output such as OD1/SQ1, and then measure time to a falling
edge

clr2rtime Turn off an output such as OD1/SQ1, and then measure time to a rising
edge on IN2/SEN

clr2ftime Turn off an output such as OD1/SQ1, and then measure time to a falling
edge

capacitance_via_RC_discharge Measure capacitance. For values >1uF

get_capacitor_range estimate capacitance of capacitor connected on IN1-GND

get_capacitance measure capacitance.

get_temperature measure CPU temperature

get_ctmu_voltage -

read_bulk_�ash -

write_bulk_�ash Do not touch. Especially locations 0,3 which are used to store the
calibration coe�cients.

set_sine set frequency of sine wave on WG

set_wave set wave type ‘sine’ / ‘tria’

set_sine_amp set amplitude of the sine wave output on WG

load_equation load an arbitrary waveform to WG using an equation

load_table load a set of 512 points to the wave generator

set_sq1 set frequency of square wave on SQ1

set_sq2 set frequency of square wave on SQ2

METHOD DESCRIPTION

set_sq1_dc set the duty cycle of the square wave on SQ1

set_sq2_dc set the duty cycle of the square wave on SQ2

set_pv1 Set the voltage output on PV1 (-5V to 5V)

set_pv2 Set the voltage output on PV2 (-3V to 3V)

servo Set the angle of a servo motor connected to SQ1

sr04_distance Measure distance using the SR04 sensor. SQ2→Trig, IN2←ECHO

sr04_distance_time Measure Timestamped distance

save save an array to a csv �le

Static Variables
The instance p contains some static variables such as p.version . These are described here

connected: Boolean. Indicates the connection status

version : A version string read from the connected device. Such as EJ-5.1

version_number: Version Number

aboutArray : print(p.aboutArray) to �nd out

calibrated : Boolean. Indicates calibration status.

verbose : set to True to get more verbose information

WaveType : Indicates if WG output is enabled to sine/tria/arbit shapes.

WaveMode : ‘sine’/’tria’/’sqr2’ . If sqr2 is enabled, WG output is disabled.

sinefreq : Last set Frequency of Wave output on WG

sqr1freq : Last set Frequency of Wave output on SQ1

sqr1dc : Last set Duty Cycle of Wave output on SQ1

sqr2freq : Last set Frequency of Wave output on SQ2

sqr2dc: Last set Duty Cycle of Wave output on WG

Variable List

Submodules

Access to communication buses such as I2C, SPI are available as submodules of the variable p . e.g.
p.I2C.scan() returns a list of addresses of sensors/devices connected to the I2C bus.

con�g

start

stop

wait

send

send_burst

restart

simpleRead

read

read_repeat

read_end

read_status

readBulk

writeBulk

scan

set_parameters

start

set_cs

stop

send8

send16

send8_burst

send16_burst

xfer

map_reference_clock

I2C : Access the I2C Communication bus

SPI : Access the SPI Communication bus

file:///tmp/mkdocs_pmgmm7ow/programming/sensors/

